SemSim: Resources for Normalized Semantic Similarity Computation Using Lexical Networks

نویسندگان

  • Elias Iosif
  • Alexandros Potamianos
چکیده

We investigate the creation of corpora from web-harvested data following a scalable approach that has linear query complexity. Individual web queries are posed for a lexicon that includes thousands of nouns and the retrieved data are aggregated. A lexical network is constructed, in which the lexicon nouns are linked according to their context-based similarity. We introduce the notion of semantic neighborhoods, which are exploited for the computation of semantic similarity. Two types of normalization are proposed and evaluated on the semantic tasks of: (i) similarity judgement, and (ii) noun categorization and taxonomy creation. The created corpus along with a set of tools and noun similarities are made publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linked Data Based Approach to Similarity Reasoning

SemSim is a semantic similarity reasoning method that has been conceived to be used as a service for the Semantic Web. SemSim is based on a Weighted Reference Ontology, which is used to semantically annotate a collection of digital resources (e.g., documents) to be searched. In this paper we present a new approach to SemSim implementation based on Linked Data, that significantly increments its ...

متن کامل

NORMAS at SemEval-2016 Task 1: SEMSIM: A Multi-Feature Approach to Semantic Text Similarity

This paper presents the submission of our team (NORMAS) to the SemEval 2016 semantic textual similarity (STS) shared task. We submitted three system runs, each using a set of 36 features extracted from the training set. The runs explore the use of the following three machine learning algorithms: Support Vector Regression, Elastic Net and Random Forest. Each run was trained using sentence pairs ...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

Robust semantic text similarity using LSA, machine learning, and linguistic resources

Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines Latent Semantic Analysis and machine learning augmented with data from se...

متن کامل

Supporting Customer Choice with Semantic Similarity Search and Explanation

Semantic search and retrieval methods have a great potentiality in helping customers to make choices, since they appear to outperform traditional keyword-based approaches. In this paper, we address SemSim, a semantic search method based on the well-known information content approach. SemSim has been experimented to be effective in a defined domain, namely the tourism sector. During experimentat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012